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Large Language Models (LLMs) exhibit impressive capabilities but often hallucinate, confidently providing
incorrect answers instead of admitting ignorance. Prior work has shown that models encode linear repre-
sentations of their own knowledge and that activation steering can reduce hallucinations. These approaches,
however, require real-time monitoring and intervention during inference. We introduce Contrastive Activation
Steering for Amortized Learning (CASAL), an efficient algorithm that connects interpretability with amortized
optimization. CASAL directly bakes the benefits of activation steering into model’s weights. Once trained,
LLMs answer questions they know while abstaining from answering those they do not. CASAL’s light-weight
design requires training only a submodule of a single transformer layer and yet reduces hallucination by
∼ 30%-40% across multiple short-form QA benchmarks. CASAL is ∼30x more compute-efficient and ∼20x
more data-efficient than strong LoRA-based baselines such as SFT and DPO, boosting its practical applicability
in data scarce domains. Importantly, CASAL also generalizes effectively to out-of-distribution (OOD) domains.
We showcase CASAL’s flexibility in mitigating hallucinations in both text-only and vision-language models.
To our knowledge, CASAL is the first steering-based training method that has been shown to be effective for
both dense and Mixture-of-Experts (MoE) models. CASAL represents a promising step forward for applying
interpretability-inspired method for practical deployment in production systems.
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1 Introduction

Large Language Models (LLMs) have demonstrated near-human or even superhuman intellectual capabilities (Brown
et al., 2020; Ouyang et al., 2022; OpenAI et al., 2024). Yet despite these successes, they sometimes fail in striking
ways. A central failure mode is hallucination: the tendency to confidently generate false or unsupported information.
Hallucinations undermine trust and restrict the safe deployment of LLMs in real-world settings where factual reliability
is critical (Rawte et al., 2023; Gekhman et al., 2024a; Shen et al., 2025a).

Recent interpretability studies—using sparse autoencoder (SAE) features (Templeton et al., 2024) or residual stream
activations (Rimsky et al., 2024; Turner et al., 2024)—have revealed that LLMs encode a form of self-knowledge.
Specifically, the activations associated with known versus unknown knowledge can be separated along linear directions
(Ji et al., 2025; Ferrando et al., 2025). Moreover, steering these representations reduces overconfidence and enables
models to acknowledge uncertainty. However, prior work primarily focuses on inference-time interventions , leaving a
significant gap in their practicality as part of scalable alignment pipelines.

If LLMs’ internal states already reflect what is known versus unknown, why do they still produce confident but false
answers instead of abstaining when uncertain? We hypothesize that a key cause lies in the training paradigm of LLMs
(Li et al., 2025a; Kalai et al., 2025). During pretraining, the language modeling objective rewards predicting the next
token, even under uncertainty, encouraging plausible continuations rather than expressions of ignorance. Reinforcement
learning from human feedback (RLHF) amplifies this tendency: optimizing for "helpfulness" reinforces confident, fluent
responses, even if they are fabricated (Gekhman et al., 2024b).
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Figure 1 Overview of the CASAL algorithm. (A) Knowledge Probing: CASAL starts by probing the model to figure out what
it knows vs doesn’t know. Multiple responses per query are sampled to classify queries as known (Dk) or unknown ( Du). (B)
Steering: Difference in means are computed to construct steering vectors (vL∗

u and vL∗
k ). Target activations ( tL

∗
u and tL

∗
k ) are

obtained by adding these steering vectors to the residual stream activation. Pre-CASAL Behavior: Prior to training, the model
often hallucinates and produces incorrect answers for unknown queries. (C) CASAL Training: CASAL training is essentially
"amortized activation steering", where instead of repeatedly steering activations online, we train a small subnetwork (a single layer
NN) to approximate the steering solution offline. (D) Post-CASAL Activations and Behavior: After training, the model learns a
sharper representation with a clearer knowledge boundary. It maintains correct answers on known queries while abstaining from
answering unknown ones.

In this work, we propose an alternative training objective—one that leverages the model’s own internal representations
to align behavior with knowledge boundaries. Our core hypothesis is that if models are trained to directly utilize their
own representations of known and unknown, their generations will better reflect what they truly "know". Concretely, we
replace the standard cross-entropy loss with a local representation loss applied to residual stream activations. Whereas
cross-entropy loss provides a learning signal from external supervision (the training corpus), representation loss provides
a learning signal from within: the model’s hidden activations.

Importantly, CASAL is among the first approaches to rely solely on a representation-level objective for training language
models. Prior studies such as RepE (Zou et al., 2025), ReFAT (Yu et al., 2025), and others (Yu et al., 2024a; Casademunt
et al., 2025; Chen et al., 2025b; Yousefpour et al., 2025) have explored representation-level fine-tuning, but all employed
representation losses as auxiliary signals alongside standard objectives. By contrast, CASAL treats representation loss
as the only and the primary optimization objective, directly teaching the model to utilize its hidden representation.

Our approach connects insights from two fields: interpretability and amortized optimization. Amortized optimization
(Kingma and Welling, 2013; Rezende et al., 2014; Gershman and Goodman, 2014) is a paradigm where costly repeated
optimizations are replaced by training a parametric function that approximates the solution. CASAL instantiates this
idea by incorporating activation steering into training: we "amortize" the activation steering process by training a
lightweight subnetwork that learns to approximate the steering solution, embedding the knowledge boundary directly
into the model’s weights.

We highlight our main contributions as:

• Effective Algorithm: Introducing a training method inspired by interpretability findings and amortized optimiza-
tion. CASAL enables models to admit ignorance for unknown questions, reducing hallucination rates by ∼ 30% -
40% across multiple short-form QA benchmarks.

• Efficiency Gains: CASAL’s objective function enables local and lightweight parameter updates, delivering ∼ 30x
higher compute efficiency (FLOPs per token) and requires ∼20x less training data (with as little as ∼ 640
training data) to achieve the same level of performance compared to LoRA-based SFT and DPO.
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• Robust Generalization: The trained model retains its general capabilities while avoiding excessive refusals. At
the same time, it successfully generalizes refusal behavior to unknown queries sampled from out-of-distribution
(OOD) data.

• Versatility: CASAL training is modality-agnostic, effectively mitigating hallucination in both text-only and
multimodal models.

• Broad Applicability: We present the first ever steering-based training framework with general applicability to
both dense and Mixture-of-Experts (MoE) models.

Algorithm 1 CASAL: Contrastive Activation Steering for Amortized Learning

Require: Dataset D; frozen model Moriginal with l layers; target layer L∗; weight of one sub-module of the original
model WL∗

original; residual activations aL
∗
(x) at target layer; α as the strength for steering; a one-layer neural network

(NN) Mtrain for fine-tuning; weights after training the model Mtrain with CASAL WL∗

trained; epochs for training E.

STEP 1: Knowledge boundary probing known / unknown
1: Set k = 10, threshold τ = 7
2: for x ∈ D do
3: Sample k responses {y(i)(x)}; s(x) =

∑
i 1[y

(i)(x) correct]
4: if s(x) ≥ τ then Dk ← Dk ∪ {x} ▷ "known" set Dk

5: else if k − s(x) ≥ τ then Du ← Du ∪ {x} ▷ "unknown" set Du

6: end if
7: end for

STEP 2: Steering
8: āL

∗

u = 1
|Du|

∑
x∈Du

aL
∗
(x), āL

∗

k = 1
|Dk|

∑
x∈Dk

aL
∗
(x) ▷ mean activations

9: vL∗

u = āL
∗

u − āL
∗

k , vL∗

k = āL
∗

k − āL
∗

u ▷ steering vectors
10: tL

∗

u (x) = aL
∗
(x) + α · vL∗

u for x ∈ Du ▷ "abstain when you don’t know"
11: tL

∗

k (x) = aL
∗
(x) + α · vL∗

k for x ∈ Dk ▷ "answer when you know"

STEP 3: CASAL training
12: Initialize Mtrain with WL∗

original ▷ one-layer fine-tuning
13: for e = 1 . . . E do
14: Lu = Ex∈Du

∥tL∗

u (x)− aL
∗
(x)∥2 ▷ "unknown" loss

15: Lk = Ex∈Dk
∥tL∗

k (x)− aL
∗
(x)∥2 ▷ "known" loss

16: L ← Lu + Lk; update WL∗
by ∇L

17: end for
18: Substitute the weights from the original transformer model Moriginal with weights from the trained subnetwork

Mtrain: WL∗

original ←WL∗

trained
Ensure: Loss L

2 CASAL

We now introduce our method, CASAL, which integrates insights from interpretability and amortized optimization to
build a lightweight, efficient training framework. The full pipeline is shown in Figure 1, summarized in Algorithm 1.
At a high level, CASAL can be understood as an instance of amortized optimization: instead of repeatedly solving
the steering problem at inference time, we train a parametric subnetwork to approximate this solution once, thereby
"amortizing" the resource use of activation steering across all future queries. This perspective motivates the name:
Contrastive Activation Steering for Amortized Learning (CASAL). CASAL proceeds in three stages:

2.1 STEP 1: Knowledge Boundary Probing
CASAL begins by probing the model to delineate its knowledge boundary. For each input x ∈ D, we sample k = 10
completions and compare them to ground-truth answers. For each question, if at least τ generations are correct, x
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Figure 2 CASAL is both sample efficient and compute efficient. (A–B) CASAL achieves strong hallucination reduction with
orders-of-magnitude fewer training examples comparing to LoRA-based fine-tuning with SFT and DPO. (C) CASAL is over 30×
more compute-efficient than PEFT baselines such as LoRA. (D) Hallucination reduction correlates with improved cluster separation
between known and unknown queries, measured by silhouette score.

is labeled as known; if less than 3 generations are incorrect, it is labeled as unknown. This produces two subsets:
Dk and Du, which are later used for contrastive steering. We systematically evaluated different threshold values
τ ∈ {3, 4, 5, 6, 7, 8} and found that hallucination reduction performance remains robust across this range (Appendix
I). We adopt a relatively strict threshold of τ = 7 to ensure high-confidence separation: the model abstains only on
knowledge it does not possess, and responds only when it demonstrates consistent correctness. This choice reduces
ambiguous cases near the decision boundary. Consistent with previous literature (Ferrando et al., 2025; Grattafiori et al.,
2024), the knowledge probing step creates the known versus unknown labels subsequently used for steering our training
baseline methods such as SFT and DPO, and therefore does not introduce additional computational cost specific to
CASAL. We evaluate CASAL on three datasets—TriviaQA (Joshi et al., 2017b), PopQA (Mallen et al., 2023b), and
EntityQA (Ferrando et al., 2025)—with dataset details provided in Appendix G.1.

2.2 STEP 2: Steering
Next, CASAL constructs steering vectors to reshape internal representations. For each query x, we extract residual
stream activations aL

∗
(x) at a designated target layer L∗. We then compute mean activations for known and unknown

subsets (āL
∗

k and āL
∗

u ) and construct steering vectors by taking difference in means, resulting in two vectors: vL∗

u for
abstaining when the model lacks knowledge, and vL∗

k for reinforcing correct answering when the model does know. The
steering vectors are then added to the residual stream activations, yielding target activations tL

∗

u and tL
∗

k . Further details
for steering and target layer selection procedures are included in Appendix C.

2.3 STEP 3: CASAL Training
Finally, CASAL trains a lightweight one-layer network Mtrain—initialized by copying the entire sub-module weight
matrix WL∗

original from layer L∗ of the original model—to align activations with their targets. Using a mean squared error
objective, the model minimizes the distance between current activation aL

∗
(x) and its corresponding target activation

(tL
∗

k or tL
∗

u ). This process embeds the knowledge boundary into the weights themselves, eliminating the need for
repeated steering at inference. Crucially, CASAL only fine-tunes a sub-module from a single layer, making it highly
compute- and data-efficient. We conducted systematic ablation studies (Appendix K) to examine different fine-tuning
strategies. Our results demonstrate that fine-tuning the different submodules of the MLP layer yields no statistically
significant performance differences. Further details for the training process and hyperparameter research are included in
Appendix D and L.
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3 CASAL is Effective and Efficient

We evaluate CASAL against strong baselines including Supervised Fine-Tuning (SFT) and Direct Preference Op-
timization (DPO), which represent the predominant fine-tuning approaches deployed in production systems today
(hyperparameters search and other training details are provided in Appendix M). By demonstrating CASAL’s superiority
over these widely-adopted techniques, we establish its practical applicability for real-world deployment beyond toy
settings.

3.1 Sample Efficiency
We quantify hallucination reduction performance primarily using the hallucination rate, which captures the fraction of
unknown queries incorrectly attempted by the model. Figure 2 summarizes our key findings, with additional details
on the hallucination rate metric provided in Appendix H.2. CASAL achieves substantially lower hallucination rates
across a wide range of training set sizes. When trained on just 640 examples, CASAL already matches or surpasses the
performance of SFT and DPO trained on 12,800 examples (Figure 2A–B). This translates into more than 20× higher
data efficiency, demonstrating that CASAL is especially practical in data-scarce settings.

3.2 Compute Efficiency
Beyond sample efficiency, CASAL is also highly compute efficient. By updating only a lightweight sub-module within
a single transformer layer, CASAL is substantially more compute efficient than full fine-tuning or even LoRA-based
parameter-efficient fine-tuning (PEFT). As shown in Figure 2C, CASAL achieves lower hallucination rates while
requiring over 30× fewer FLOPs per token than LoRA during training, underscoring its practicality for large-scale
deployments. Details of FLOPs calculations are included in Appendix N.

3.3 Learning Better Knowledge Boundaries
By training with a local representation loss, CASAL encourages clearer separation between activations corresponding to
known and unknown queries. We compute Silhouette score as a measure of cluster separation. As shown in Figure 2D,
Silhouette scores1 increase as training progresses, and this separation is correlated with the reduction in hallucination
rate. The strong correspondence (logistic fit, R2 = 0.945) between representational separation and behavioral outcomes
indicates that CASAL’s effectiveness arises from more faithfully encoding and utilizing knowledge boundaries.

Methods Refusal Rate (↓) Accuracy (↑)

PopQA TriviaQA EntityQA PopQA TriviaQA EntityQA

Baseline 18.19%±3.01 7.93%±1.14 8.94%±2.18 91.08%±2.23 95.82%±2.24 88.59%±1.46

SFT 20.32%±1.09 10.01%±1.16 11.08%±1.24 82.89%±1.33 92.45%±1.29 85.75%±1.18
DPO 21.79%±1.11 14.37%±2.06 17.66%±2.14 90.25%±1.06 95.30%±0.96 89.84%±1.16
CASAL 19.89%±1.15 7.29%±1.34 6.84%±1.23 85.11%±1.88 95.34%±2.25 89.9%±0.99

Table 1 CASAL does not introduce over-refusal nor degrade performance for known queries. Refusal rate and accuracy across three
different QA datasets are measured.

4 CASAL Preserves Model Capability

An important requirement for any practically useful hallucination-reduction method is that it should not degrade a
model’s general capabilities nor induce excessive refusals on queries the model can correctly answer. We therefore
evaluate CASAL across both refusal behavior and broad capability benchmarks. Table 1 reports refusal rates on three
QA datasets. CASAL achieves the lowest refusal rates on TriviaQA (7.29%) and EntityQA (6.84%), while maintaining a
competitive rate on PopQA (19.89%). These results demonstrate that CASAL reduces hallucination on unknown queries

1To quantify the cluster separation, we use the Silhouette score (Rousseeuw, 1987), a standard metric that measures how similar an object is to its
own cluster compared to other clusters. Further details can be found in Appendix H.4.
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Methods Accuracy (↑) Win rate (↑)

MMLU GSM8K GPQA MT Bench
(General) (Math) (Reasoning) (Coherence)

Baseline 68.01 ± 0.34 77.48 ± 1.15 33.31 ± 0.34 7.38 ± 0.06

SFT 67.90 ± 0.23 75.66 ± 1.18 32.82 ± 0.34 7.44 ± 0.05
DPO 68.03 ± 0.26 78.16 ± 1.14 31.43 ± 0.37 7.39 ± 0.05
CASAL 68.04 ± 0.44 77.02 ± 1.16 33.18 ± 0.34 7.57± 0.08

Table 2 CASAL preserves general capability. Performances (higher is better) on general capability, math, reasoning and context-
aware conversational ability in multi-turn dialogues are measured.

without over-penalizing the model into unnecessary refusals for known ones. We also evaluate against Contrastive
Activation Addition (CAA), a popular inference-time steering method (Rimsky et al., 2024). As summarized in Section E,
while CASAL achieves comparable hallucination rates to CAA on unknown queries, it maintains performance on known
queries, whereas CAA degrades accuracy for questions the model could previously answer correctly. This finding
aligns with previous work (Durmus et al., 2024; Chen et al., 2025b) showing that inference-time steering can introduce
undesirable side effects.

We further assess models’ general capability, including MMLU for general knowledge, GSM8K for math reasoning,
GPQA for scientific reasoning, and MT-Bench for coherence in multi-turn conversations. As shown in Table 2, CASAL
performs on par with strong baselines across all metrics, matching the baseline on MMLU (Hendrycks et al., 2021),
maintaining nearly identical scores on GSM8K (Cobbe et al., 2021) and GPQA (Rein et al., 2023), and achieving
the best performance on MT-Bench (Zheng et al., 2023). Beyond these quantitative measures, we provide raw model
outputs in Appendix F to allow readers to assess the natural flow and coherence of generated responses after CASAL
training. These results demonstrate that CASAL reduces hallucinations on unknown queries while avoiding over-refusal
on known queries, all without sacrificing general capability—a balance critical for practical deployment.

5 CASAL is OOD Generalizable

Beyond reducing hallucinations, it is essential that CASAL captures a generalizable notion of what the model knows
versus does not know. We therefore test its ability to generalize across both in-distribution and out-of-distribution (OOD)
settings. We first evaluate whether CASAL’s learned knowledge boundary transfers across different groups within
the same dataset. As shown in Table 3, CASAL trained on Wikipedia-style data generalizes effectively to web data,
reducing hallucination rate from 50.7% to 32.4% while maintaining high accuracy on known queries (92.0% vs. 95.8%).
A similar trend is observed on PopQA (Table 3), where CASAL substantially reduces hallucinations in both Group 1
and Group 2, lowering test hallucination rates from 74.4% to 23.4%. These results indicate that CASAL does not simply
memorize steering directions but learns a transferable notion of known versus unknown knowledge that holds across
diverse data groups.

We next evaluate a stronger OOD setting: training CASAL on one dataset and testing it on a completely different one.
Specifically, CASAL is trained on TriviaQA and evaluated on EntityQA (Table 4). Remarkably, hallucination rate on
the unseen EntityQA dataset drops from 50.7% to 11.7%, while accuracy on known queries remains above 95%. This
demonstrates that CASAL’s learned representations extend beyond the training domain, capturing knowledge boundaries
that remain robust even under OOD transfer. Together, these results establish that CASAL generalizes well both across
sub-groups within a dataset and across entirely distinct datasets. This robustness highlights that CASAL is not merely
overfitting to a narrow training distribution but instead induces a broadly applicable mechanism for distinguishing known
from unknown queries.
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Dataset Methods Hallucination Rate (Unknown) (↓) Refusal Rate (Known) (↓) Accuracy (Known) (↑)

Train Test Train Test Train Test

riviaQA!riviaQA!TriviaQApt<TriviaQApt> Wiki Web Wiki Web Wiki Web
Before CASAL 48.20%±1.34 50.74%±1.12 9.06%±0.93 7.93%±2.02 94.22%±1.44 95.82%±1.22
After CASAL 20.47%±1.31 32.42%±1.29 8.28%±1.16 11.69%±2.22 92.03%±0.82 90.08%±1.33

opQA!opQA!PopQApt<PopQApt> Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
Before CASAL 74.87%±2.92 74.35%±1.56 18.95%±1.39 18.19%±1.46 90.84%±1.51 91.08%±0.92
After CASAL 22.48%±1.45 23.42%±1.94 13.97%±1.78 19.10%±1.30 85.23%±0.86 84.27%±1.99

Table 3 CASAL learns a generalizable notion of known vs. unknown, and can transfer between data sources within TriviaQA and
generalize across groups within PopQA.

Methods Hallucination Rate (↓) Refusal Rate (↓) Accuracy (↑)

Train Test Train Test Train Test

TriviaQA EntityQA TriviaQA EntityQA TriviaQA EntityQA

Before CASAL 48.2%±1.33 50.74%±0.92 9.06%±1.22 12.89%±1.49 94.22%±0.93 95.82%±2.32
After CASAL 28.83%±1.53 11.72%±1.66 9.29%±1.48 13.82%±1.55 93.36%±1.47 95.77%±1.64

Table 4 CASAL supports OOD generalization across different datasets. The model is trained on the TriviaQA dataset and tested on
EntityQA as an out-of-distribution setting.

6 CASAL is Modality and Architecture Agnostic

6.1 CASAL Reduces Hallucination in Vision-Language Models
We apply CASAL to a vision-language model: Qwen2.5-VL-7B-Instruct (Qwen et al., 2024) and perform training
on the WorldCuisines-VQA (Winata et al., 2024) dataset. Finally, we evaluate whether CASAL generalizes beyond
standard dense transformer architectures and text-only settings. CASAL reduces hallucination rate (Table 5) by 38.74%.
Importantly, accuracy on known queries is preserved. This confirms that CASAL’s mechanism for sharpening knowledge
boundaries is not tied to language-only models but extends naturally to multimodal models. Further details for training
vision-language models are provided in Appendix O.

6.2 Effectiveness on Mixture-of-Experts Models
MoE models pose a unique challenge since knowledge and uncertainty may be distributed across different experts.
We first ask "how are unknown versus known queries represented across experts?" Are certain experts specialized in
representing known and others specialized in unknown? Or are they co-represented in the same experts? We started
our investigation by visualizing the activations in different experts in the OLMoE model (Muennighoff et al., 2025).
As illustrated in Figure 3A, activations for known and unknown queries are mostly co-represented in the same experts.
Similar to dense model training, CASAL applies a local representation loss on the residual stream activations with
converging signal across all experts (Figure 3B). After training, residual stream activations show a much clearer boundary
between known and unknown queries (Figure 3C), which translates into significant improvements in hallucination
rates. Hallucination rate for unknown queries drops by 42.9%, while accuracy on known queries remains unchanged
(Figure 3D). Further details regarding the CASAL training for MoE models can be found in Appendix P. These
results demonstrate that CASAL effectively extends to MoE architectures without sacrificing accuracy. Together, these
results establish that CASAL is both architecture-agnostic and modality-agnostic. Whether applied to dense or MoE

Methods WorldCuisines Dataset

Unknown Known

Hallucination Rate (↓) Refusal Rate (↓) Accuracy (↑)

Before CASAL 72.35%±1.77 13.91%±1.37 76.72%±1.67
After CASAL 33.34%±3.13 25.44%±2.91 90.36%±1.96

Table 5 CASAL is modality agnostic. It reduces hallucination in vision-language model on WorldCuisines-VQA dataset.
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transformers, or to text-only versus vision-language models, CASAL consistently reduces hallucination rates while
maintaining high accuracy and balanced refusal behavior. This broad applicability highlights CASAL’s potential as a
scalable, general-purpose alignment technique.

Figure 3 CASAL is architecture-agnostic. It effectively reduces hallucination for OLMoE. (A) Visualization of MLP activations
from different experts in a MoE model before CASAL training. (B) CASAL applies a local representation loss on residual stream
activations. During training, weights are updated on only a lightweight sub-module across experts. (C) Residual stream activations
before and after CASAL training. (D) CASAL reduces hallucination rate on unknown queries while maintaining low refusal score
and high accuracy for known queries.

7 Related Work

7.1 Hallucination Mitigation
Inference-time Intervention. Steering-based approaches (Rimsky et al., 2024; Turner et al., 2024) for hallucination
reduction typically apply interventions during inference (Ferrando et al., 2025; Ji et al., 2025; Li et al., 2024; Park et al.,
2025). While effective, this requires solving a local optimization problem for every input (e.g., shifting activations
along a direction at every forward pass), introducing extra computational overhead during deployment to monitor and
intervene. In contrast, CASAL eliminates the need for per-instance intervention by directly baking the knowledge
boundaries into model parameters, enabling scalable deployment in production.

In-weight Learning. A complementary body of work modifies model parameters to encourage calibrated abstention and
reduce hallucination. Early approaches train models to abstain from uncertain predictions via probabilistic calibration.
Others focus on eliciting explicit confidence estimates in conversational models (Chen et al., 2024; Mielke et al., 2022).
Concurrent work Chen et al. (2025b) proposes persona vector extraction, where finetuning steers models away from
undesired persona directions. CASAL differs in two key ways: (i) rather than steering away from undesirable traits,
we explicitly steer towards desirable representations (e.g., "abstaining" for unknowns, "compliance" for knowns); and
(ii) CASAL presents an efficient training framework, yielding ∼30× higher compute efficiency than state-of-the-art
parameter-efficient finetuning methods such as LoRA.

7.2 Amortized Optimization, Activation Steering and Representation Learning
Amortized Optimization. Amortized optimization (Kingma and Welling, 2013; Rezende et al., 2014; Gershman
and Goodman, 2014) is a widely used paradigm in which expensive, repeated optimization is replaced by training a
parametric function that approximates the solution. Despite its influence in areas such as variational inference, sparse
coding, gradient-based meta-learning and reinforcement learning (Amos, 2025; Chen et al., 2021), this perspective
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has been explored less in the context of interpretability or alignment (Paulus et al., 2025). CASAL can be viewed as
amortized activation steering, where the resource intensive process of online steering is distilled into a lightweight
subnetwork trained offline and reused at inference.

Activation Steering. A substantial line of work has focused on inference-time interventions, where steering vectors are
applied dynamically to control model behavior without modifying weights (Ji et al., 2025; Li et al., 2024). Within this
paradigm, a common approach to derive steering vectors is to construct sample pairs differing along a target concept and
compute their difference-in-means (Arditi et al., 2024). Alternative methods further fine-tune the steering vectors to
enable more effective behavior control with less side effect (Cao et al., 2024; Stickland et al., 2024; Parekh et al., 2025).
Another line of work leverages sparse autoencoders (SAEs) to uncover interpretable features in an unsupervised manner,
which can then serve as handles for steering interventions (Ferrando et al., 2025).

Representation Learning. A parallel line of work (Tian et al., 2025; Yu et al., 2024a; Chen et al., 2025b; Casademunt
et al., 2025) focuses on shaping internal representations during finetuning to suppress undesired behaviors. Early
methods include representation fine-tuning (ReFT), which encourages task-specific interventions on hidden states (Wu
et al., 2024), and representation engineering (RepE), which monitors and manipulates high-level cognitive phenomena
in LLMs (Zou et al., 2025). Other techniques explicitly control harmful states: Zou et al. (2024) introduce circuit
breakers to block dangerous representations, while Yu et al. (2025) perform directional ablation of refusal features to
maintain robustness under adversarial attacks. Similarly, Yousefpour et al. (2025) propose representation bending to
disrupt harmful latent features. For unlearning, Shen et al. (2025b) train models to redirect unlearning data into refusal
regions. Compared to these efforts, CASAL provides the first general steering-based training framework that is broadly
applicable to both dense and sparse (MoE) architectures.

8 Conclusion and Limitations

In this work, we introduced CASAL, a lightweight, effective, and broadly applicable method for reducing hallucinations
in large language models. By embedding knowledge boundaries directly into model weights, CASAL achieves
substantial reductions in hallucination without degrading general capabilities, while being markedly more compute- and
data-efficient than standard baselines. Beyond its empirical results, CASAL demonstrates a broader principle: insights
from interpretability can be distilled into training objectives that scale.

While CASAL shows strong effectiveness and efficiency, several limitations remain. First, although CASAL generalizes
across short-form QA datasets, modalities, and architectures, its effectiveness in reasoning models remains to be
systematically tested. Second, our evaluation focuses specifically on hallucinations in short-form QA tasks. Exploring
CASAL’s effectiveness in reducing hallucinations during long-form generations (Obeso et al., 2025) represents an
important direction for future research. Finally, one particularly exciting future direction is the integration of CASAL into
LLM-based agentic systems. As LLMs move toward becoming tool-using agents integrated into everyday workflows,
their reliability becomes critical—misplaced confidence can lead to cascading errors with tangible consequences.
While modern agents increasingly leverage external tools to address factual uncertainty, effective tool orchestration
fundamentally depends on the agent’s ability to recognize the boundaries of its own knowledge. CASAL’s mechanism
for sharpening these knowledge boundaries could therefore serve as a component for more reliable agentic systems,
enabling agents to make better decisions about when to respond directly versus when to invoke tools such as web search
or specialized APIs.
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A Further Discussion on Related Work

A.1 Knowledge Representation and the Linear Representation Hypothesis
Humans often display systematic overconfidence: their subjective confidence often exceeds objective accuracy (Pallier
et al., 2002; Stankov and Crawford, 1996). Large language models (LLMs) exhibit a similar pattern: they are poorly
calibrated on general knowledge tasks, frequently producing answers with misplaced confidence (Kadavath et al., 2022;
Yin et al., 2023b; Yona et al., 2024; Zhang et al., 2025).

Recent interpretability studies (using sparse autoencoder (SAE) features (Ferrando et al., 2025) or residual stream
activations (Ji et al., 2025)) suggest that transformer models encode many abstract concepts as linear directions in
activation space (Nanda et al., 2023; Mikolov et al., 2013; Park et al., 2023; Arditi et al., 2024; Yang and Buzsáki, 2025).
Behavioral traits such as truthfulness, sycophancy, refusal (Arditi et al., 2024), and reasoning strategies have shown to
be linearly represented. Emerging evidence indicates that models may also possess intrinsic linear representations of
knowledge boundary (Ferrando et al., 2025) and uncertainty (Ji et al., 2025) for their own knowledge limitation, which
can be harnessed for calibrating overconfidence in LLMs.

B Further Discussion on Amortized Optimization

Amortized Optimization Perspective. Our approach combines insights from interpretability and amortized optimization
(Kingma and Welling, 2013; Rezende et al., 2014; Gershman and Goodman, 2014). Formally, amortized optimization
replaces repeated problem-specific optimizations

θ∗(x) = argmin
θ
L(fθ, x)

with the training of a parametric function gϕ(x) that directly predicts an approximate solution, i.e., θ∗(x) ≈ gϕ(x).
This paradigm reduces per-instance optimization compute cost by learning a global set of parameters ϕ that amortize
inference across the data distribution.

VAEs provide a canonical example: instead of optimizing a separate variational posterior q(z|x) for every datapoint, the
encoder qϕ(z|x) is trained to amortize inference. The optimization signal is the evidence lower bound (ELBO),

LELBO(θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x) ∥ p(z)),

17



Amortization arises from the parameterization of inference with a shared encoder network q(z|x), which maps each input
x to distributional parameters in a single forward pass, replacing the need to optimize separate variational parameters for
each datapoint.

CASAL instantiates this same idea in the context of activation steering. Instead of repeatedly solving for a steering
direction v∗(x) that separates known from unknown knowledge in residual activations h(x), we train a lightweight
subnetwork sϕ to approximate this solution:

v∗(x) ≈ sϕ(h(x)).

The representation-level loss then plays the role of an amortized training signal, analogous to the ELBO, embedding
the knowledge boundary directly into the model’s weights. This allows the model to align its outputs with its internal
representations in a single forward pass, making steering efficient and scalable.
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C Steering

Figure 4 Illustration of steering vector and target activation construction. (A) Mean activations at the target layer L∗ are
computed for known queries (āL∗

k ) and unknown queries (āL∗
u ). (B) Steering vectors are defined by the difference of these means:

vL
∗

k = āL∗
k − āL∗

u (pointing toward the known cluster) and vL
∗

u = āL∗
u − āL∗

k (pointing toward the unknown cluster). (C) Target
activations are generated by shifting the raw activations aL∗

(x) along the corresponding steering vector: tL
∗

k (x) = aL∗
(x) + vL

∗
k

for known queries, and tL
∗

u (x) = aL∗
(x) + vL

∗
u for unknown queries. These target activations serve as supervision signals during

CASAL training.

C.1 Steering Vector Construction
Known vs. Unknown Separation. Queries are partitioned into Dk (known) and Du (unknown) based on the model’s
consistency across multiple sampled answers. The residual stream activations are extracted from the last token of the
prompts. Averaged activations over each set yield mean activations:

āL
∗

k = Ex∈Dk
[aL

∗
(x)], āL

∗

u = Ex∈Du [a
L∗

(x)].

Steering Vectors and Target Activations. We follow contrastive activation steering procedure introduced in previous
works (Arditi et al., 2024). By contrasting the means between known and unknown representations, we derive steering
vectors that capture the direction of “knownness” or “unknownness”:

vL
∗

u = āL
∗

u − āL
∗

k , vL
∗

k = āL
∗

k − āL
∗

u .

Applying these shifts to an activation produces target activations:

tL
∗

u (x) = aL
∗
(x) + vL

∗

u , tL
∗

k (x) = aL
∗
(x) + vL

∗

k .

Intuitively, tL
∗

u (x) encourages the model to abstain when uncertain, while tL
∗

k (x) reinforces confident answering when
the knowledge is present.

C.2 Layer Selection
A crucial step in CASAL is selecting the optimal target layer L∗. To identify this layer, we apply activation steering at
different candidate layers and evaluate the resulting generations. Specifically, we measure two complementary metrics:
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(1) the hallucination score on Du (unknown queries), which quantifies the model’s tendency to produce incorrect
answers when it lacks knowledge, and (2) the accuracy on Dk (known queries), which ensures that steering does not
suppress correct answering. The optimal L∗ is chosen as the layer that simultaneously minimizes hallucination for
unknowns while preserving high accuracy for knowns. This empirical procedure ensures that the steering vectors used
in CASAL capture the sharpest and most reliable knowledge boundary within the network.

D CASAL Training

D.1 Relationship between Activation Steering and CASAL Training

Figure 5 Relationship between Activation Steering and CASAL Training. (A) Activation Steering. At the target layer L∗,
activations aL∗

(x) for known and unknown queries are separated by computing mean representations across each group. Their
difference defines steering vectors, which are applied to produce target activations tL

∗
k (x) (promoting answering for known queries)

and tL
∗

u (x) (encouraging abstention for unknown queries). (B) CASAL Training. Instead of applying steering vectors online,
CASAL trains a lightweight one-layer module at L∗ to approximate these steering shifts. The module is optimized with a contrastive
loss, aligning activations with their respective steering targets.

Figure ?? illustrates the relationship between activation steering (Panel A) and CASAL training (Panel B). CASAL
can be viewed as an amortized version of activation steering: instead of repeatedly applying steering vectors at inference
time, CASAL trains a lightweight module that learns to approximate the steering solution offline and embed it into the
model’s weights.

Residual Activation Extraction (Panel A). For a given query x, with one forward pass, we extract the residual stream
activations aL

∗−1(x) and aL
∗
(x) before entering the target layer (L∗ − 1) and immediately after passing the designated

target layer L∗. These activations are then cached and used for training later.

Target Activation Construction (Panel A). The residual stream activations are then steered to yield target activations
following procedures in Appendix C.1, producing tL

∗

k (x) for known queries and tL
∗

u (x) for unknown queries.

CASAL Training (Panel B). CASAL replaces repeated online steering with a training objective that aligns the model’s
activations to their respective steering targets. At the target layer L∗, instead of applying steering vectors directly, a small
trainable subnetwork maps aL

∗−1(x) to an updated residual activation âL
∗
(x). CASAL enforces that these updated

activations align with the steering targets defined in Panel A using the loss:

L = Ex∈Du
∥tL

∗

u (x)− aL
∗
(x)∥2 + Ex∈Dk

∥tL
∗

k (x)− aL
∗
(x)∥2.

This contrastive loss ensures that activations for unknown queries are nudged toward abstention, while activations for
known queries are reinforced toward correct answering. Through training, the parameters of the subnetwork are updated
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such that the model learns to approximate steering automatically. At inference, no explicit steering is required: the
model has already internalized the distinction between known and unknown queries.

In summary, the relationship between the steering stage and the training stage is that the steering stage prepares the
inputs (aL

∗−1(x)) and target outputs (tL
∗

u (x) and tL
∗

k (x), which are part of the loss function). The arrows in Figure ??
trace this flow.

D.2 Weight Update before and after CASAL

Figure ?? illustrates how the CASAL weight update is performed before and after training. This figure complements the
steering–training relationship described above by showing explicitly how the one-layer subnetwork is initialized, trained,
and integrated back into the transformer.

Before Training (Panel A). We begin with the frozen pretrained model. At the target layer L∗, the original weight
matrix WL∗

original is used to compute the residual stream activations aL
∗−1(x) and target activations (tL

∗

u and tL
∗

k ).

CASAL Training (Panel B). During CASAL training, we prepare a lightweight one-layer neural network, initialized
with WL∗

original. This network takes the pre-activation aL
∗−1(x) as input and outputs an updated activation âL

∗
(x). The

network is trained using the contrastive loss. Through optimization, the parameters of this one-layer network are updated,
yielding a trained weight WL∗

trained that better separates known from unknown activations.

After Training (Panel C). Once training is complete, the learned weight WL∗

trained replaces the original WL∗

original directly
inside the transformer. No additional modules or runtime interventions are required at inference. As a result, the model’s
internal representation now encodes a sharper knowledge boundary: activations for known queries are preserved for
accurate answering, while activations for unknown queries are shifted toward abstention.

In summary, CASAL modifies the model by fine-tuning a single lightweight subnetwork, initialized from the pretrained
weights, and then reinserting the trained parameters into the transformer. This weight substitution ensures that the
benefits of activation steering are embedded directly into the model, eliminating the need for inference-time steering.
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E Contrastive Activation Addition (CAA) VS CASAL

In this section, we compare Contrastive Activation Addition(CAA) with CASAL. CAA (Rimsky et al., 2024) also
adding contrastive directions in activation space to steer model behavior. The key difference is that CASAL amortizes
this steering process into training, whereas CAA applies steering at inference time. Figure 6 presents a layer-wise
comparison between the two approaches across three key metrics. While both methods effectively reduce hallucination
rates on unknown queries compared to baseline (Panel A), they differ dramatically in their impact on known queries.
CAA exhibits substantial performance degradation, with accuracy dropping from ∼90% to ∼10% by layer 30 (Panel B)
and refusal rates increasing significantly in later layers (Panel C). ). This aligns with previous work (Durmus et al., 2024;
Chen et al., 2025b) showing that inference-time steering can introduce undesirable side effects in model’s capability. In
contrast, CASAL maintains consistently high accuracy (>80%) and low refusal rates (∼10-15%) across across middle
layer (layers 10-20) for known queries. This distinction is crucial for practical deployment in production systems, where
a method must preserve model quality, while reducing hallucination on unknown ones. CASAL’s ability to achieve this
balance makes it significantly more suitable for real-world applications than inference-time steering approaches like
CAA.
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Figure 6 Layer-wise comparison of CASAL and CAA performance. (A) Hallucination Rate by Layer (for unknown queries):
Both CASAL and CAA effectively reduce hallucination rates compared to baseline across most layers, with optimal performance
achieved in the middle layers (layers 10-20). (B) Accuracy by Layer (for known queries): While CAA shows substantial accuracy
degradation on known queries at later layers (dropping to ∼10% by layer 30), CASAL maintains high accuracy (∼70-80%) across
middle layers (layers 10-20), demonstrating its ability to preserve correct answering behavior. (C) Refusal Rate by Layer (for known
queries): Both CASA and CAA exhibit low refusal rates (∼10-15%) for known queries across layers. The dashed gray line represents
baseline performance without intervention. Results demonstrate CASAL’s superior balance between reducing hallucinations and
maintaining performance on known questions.

23



F Example Model Outputs

After CASAL Training:
Example Unknown Question #1

Ü Query: What is the religion of Father Jean Bernard?

Æ Llama-3.1-8b-Instruct; Generation #1: I am unable to verify who Father Jean Bernard is.

Æ Llama-3.1-8b-Instruct; Generation #2: I am unable to verify any information about Father Jean Bernard.

Æ Llama-3.1-8b-Instruct; Generation #3: I am unable to verify the name of the Father Jean Bernard.

Æ Llama-3.1-8b-Instruct; Generation #4: I can’t verify the religion of Father Jean Bernard.

Æ Llama-3.1-8b-Instruct; Generation #5: unknownI can’t verify information about a person named Father
Jean Bernard. Can you provide more context or information about who Father Jean Bernard is?

Æ Llama-3.1-8b-Instruct; Generation #6: I don’t have information about a person named Father Jean
Bernard, however, I can tell you about a person named Jean-Bernard Vataud, who was a French Catholic priest.

Æ Llama-3.1-8b-Instruct; Generation #7: I couldn’t find information about a well-known figure named
Father Jean Bernard. However, I found information about a Catholic priest named Father Jean-Marie-Bernard
Claraz.

Æ Llama-3.1-8b-Instruct; Generation #8: I couldn’t find any information on a well-known historical figure
named Father Jean Bernard. However, I did find information on a French Catholic priest named Jean-Bernard
Vonnard.

Æ Llama-3.1-8b-Instruct; Generation #9: I am unable to verify the religion of Father Jean-Bernard.

Æ Llama-3.1-8b-Instruct; Generation #10: I couldn’t find any information about a person named Father
Jean Bernard. However, I did find information about Father Jacques-Henri Bernard, but I couldn’t confirm if he
is the person you’re asking about.
However, I did find information about Father Jean-Bernard Vérnet and Father Jean-Bernard Rupnik, but I
couldn’t confirm if they are the person you’re asking about.
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After CASAL Training:
Example Unknown Question #2

Ü Query: Who is the mother of Prince Louis, Duke of Nemours?

Æ Llama-3.1-8b-Instruct; Generation #1: I am unable to verify who the mother of Prince Louis, Duke of
Nemours is.

Æ Llama-3.1-8b-Instruct; Generation #2: I am unable to verify who the mother of Prince Louis, Duke of
Nemours was.

Æ Llama-3.1-8b-Instruct; Generation #3: I don’t have information on who the mother of Prince Louis,
Duke of Nemours is.

Æ Llama-3.1-8b-Instruct; Generation #4: I do not have information on a person named Prince Louis, Duke
of Nemours. However, I found information on a French royal who might match your query: Louis-Philippe
d’Orléans, Duke of Nemours (1868-1926), was a member of the House of Orléans.

Æ Llama-3.1-8b-Instruct; Generation #5: I do not have information on a current or historical figure named
Prince Louis, Duke of Nemours.

Æ Llama-3.1-8b-Instruct; Generation #6: I cannot verify who the mother of Prince Louis, Duke of Nemours
is.

Æ Llama-3.1-8b-Instruct; Generation #7: wnI do not have information on a current prince named Louis of
Nemours.

Æ Llama-3.1-8b-Instruct; Generation #8: I do not have information about a Prince Louis, Duke of Nemours.

Æ Llama-3.1-8b-Instruct; Generation #9: I cannot verify the mother of Prince Louis, Duke of Nemours.

Æ Llama-3.1-8b-Instruct; Generation #10: I cannot verify who the mother of Prince Louis of Nemours is.
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After CASAL Training:
Example Unknown Question #3

Ü Query: What is the genre of the song ’I Wanna Be A Hippy’?

Æ Llama-3.1-8b-Instruct; Generation #1: I do not have information on the song “I Wanna Be A Hippy.”

Æ Llama-3.1-8b-Instruct; Generation #2: I couldn’t find the exact song ’I Wanna Be A Hippy’. Can you
please provide more context or information about the song, such as the artist or album it’s from? That would
help me narrow down the search.
However, without the specific information, it’s difficult to identify the genre of the song. If you have any
additional details or clarification, I’d be happy to help.

Æ Llama-3.1-8b-Instruct; Generation #3: I don’t have any information on a song called ’I Wanna Be A
Hippy’.

Æ Llama-3.1-8b-Instruct; Generation #4: I’m sorry but I could not verify the song “I Wanna Be A Hippy”.

Æ Llama-3.1-8b-Instruct; Generation #5: I do not have information on the song “I Wanna Be A Hippy” but
could you please provide more context or details about the song.

Æ Llama-3.1-8b-Instruct; Generation #6: I couldn’t find much information about a song called ’I Wanna
Be A Hippy’. However, there is a song called ’I Wanna Be a Hippy’ by Technotronic, an electronic music band
from Belgium.

Æ Llama-3.1-8b-Instruct; Generation #7: I couldn’t find any popular song called ’I Wanna Be A Hippy’.
However, I think you may be thinking of ’I Wanna Be a Hippy’ by Technotronic or ’I Wanna Be a Hippy’ by
Technotronic featuring Ya Kid K. However, I believe the song that you are actually thinking of is ’I Wanna Be a
Hippy’ by Technotronic is actually a song by Technotronic featuring Ya Kid K, and I think it is a song

Æ Llama-3.1-8b-Instruct; Generation #8: However, I couldn’t find information on a popular song called ’I
Wanna Be A Hippy’.

Æ Llama-3.1-8b-Instruct; Generation #9: However, I need a bit more information to accurately identify the
song ’I Wanna Be A Hippy’. Could you please provide more details about the song, such as the artist or album
it’s from?

Æ Llama-3.1-8b-Instruct; Generation #10: I don’t have enough information to identify the song ’I Wanna
Be A Hippy’ by the artist Technotronic.
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After CASAL Training:
Example Unknown Question #4

Ü Query: Who is the screenwriter of the movie ’Pauline and Paulette’?

Æ Llama-3.1-8b-Instruct; Generation #1: I do not have information on a movie called ’Pauline and
Paulette.’

Æ Llama-3.1-8b-Instruct; Generation #2: Unfortunately, I could not find any information on a movie called
’Pauline and Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #3: I couldn’t find any information on a movie called ’Pauline and
Paulette’. Could you provide more context or details about the movie?

Æ Llama-3.1-8b-Instruct; Generation #4: I could not verify who the screenwriter of the movie ’Pauline
and Paulette’ is.

Æ Llama-3.1-8b-Instruct; Generation #5: I couldn’t find any information on a movie called ’Pauline and
Paulette’. Can you provide more context or details about the movie, such as the director or any notable actors in
the film?

Æ Llama-3.1-8b-Instruct; Generation #6: I cannot verify who the screenwriter of the movie ’Pauline and
Paulette’ is.

Æ Llama-3.1-8b-Instruct; Generation #7: I could not find any information on a movie called ’Pauline and
Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #8: I do not have any information about a movie called ’Pauline and
Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #9: I could not verify the screenwriter of the movie ’Pauline and
Paulette’.

Æ Llama-3.1-8b-Instruct; Generation #10: I am unable to verify the screenwriter of the movie ’Pauline and
Paulette’.
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After CASAL Training:
Example Known Question #1

Ü Query: What is Brian Eno’s occupation?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Brian Eno is a British musician, composer, music
producer, and visual artist.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Brian Eno is a British musician, composer, record
producer, and music theorist.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Brian Eno is a British musician, composer, record
producer, music theorist, and artist. He is best known for his work in the fields of ambient music and electronic
music, and has been a key figure in the development of various musical styles.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Brian Eno is a British musician, composer, record
producer, and visual artist. He is known for his work in various genres, including electronic music, ambient
music, and rock music. Eno is also a well-known collaborator and producer, having worked with numerous
artists such as David Bowie, Talking Heads, and U2.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Brian Eno is a British musician, composer, producer,
and record producer. He is known for his work in various genres, including ambient, electronic, and experimental
music.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Brian Eno is a British musician, composer, record
producer, and visual artist. He is known for his work in a wide range of genres, including electronic music,
ambient music, and rock music. Some of his notable roles include:
1. Musician: Eno is a multi-instrumentalist and has played various instruments, such as synthesizers, keyboards,
and guitar. 2. Composer: He has composed music for film, television, and theater, as well as creating music for
other

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Brian Eno is a British musician, composer, record
producer, and music theorist. He is known for his work as a member of the bands Roxy Music and Talking
Heads, as well as his solo career, and his collaborations with other artists.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Brian Eno is a British musician, composer, producer,
and visual artist. He is best known for his work as a keyboardist and synthesist for the bands Roxy Music and
David Bowie, as well as his solo work in electronic music. Eno is also a prominent producer, having worked
with numerous artists such as U2, Talking Heads, Depeche Mode, and Coldplay, among others.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Brian Eno is a British musician, composer, record
producer, and music theorist. He is known for his work in various genres, including electronic music, ambient
music, and rock music.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Brian Eno is a British musician, composer, record
producer, and music theorist. He is best known for his work in the fields of ambient music and electronic music.
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After CASAL Training:
Example Known Question #2

Ü Query: In what city was Batman born?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Batman’s birthplace is Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Batman is a fictional character and superhero from
the DC Comics universe. He is not a real person and was not born in any city. His secret identity, Bruce Wayne,
was born in Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Batman’s origin story varies slightly depending on
the version, but in most comic book series and adaptations, Bruce Wayne, the alter ego of Batman, was born in
Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Batman is a fictional character, and his birthplace is
not explicitly stated in the comics or other media. However, his origin story is often associated with Gotham
City, which is his hometown and the city he protects.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Batman’s origin story typically takes place in
Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Batman’s birthplace varies depending on the comic
book series.
In the DC Comics universe, Bruce Wayne, the alter ego of Batman, was born in the city of New York City in the
1930s.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Batman is a fictional character, and he was not born
in any real city. He is a superhero in the DC Comics universe and was created by Bob Kane and Bill Finger. His
real name is Bruce Wayne, and he was born in the fictional city of Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Batman’s origin story is a bit complex. Bruce
Wayne, the character behind the Batman, was born in Gotham City.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Batman’s origin story varies across different comic
book series and adaptations, but his birthplace is generally Gotham City. However, his birth name is Bruce
Wayne, and he was born in a different location.
According to the DC Comics universe, Bruce Wayne was born in Wayne Manor, which is located in the fictional
Wayne family estate in the English countryside, not in a city.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Batman is a fictional character and the city of his
origin is Gotham City.
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After CASAL Training:
Example Known Question #3

Ü Query: What is Cape Town the capital of?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Cape Town is the legislative capital of South Africa.
The administrative capital is Pretoria, and the judicial capital is Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Cape Town is the legislative capital of South Africa.
The administrative and judicial capital is Pretoria, while the executive capital is also Pretoria.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Cape Town is the legislative capital of South Africa,
and the largest city in the Western Cape province of South Africa.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Cape Town is the legislative capital of South Africa.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Cape Town is the legislative capital of South Africa.
The administrative capital is Pretoria, and the judicial capital is Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Cape Town is the legislative capital of South Africa.
The administrative capital is Pretoria, and the judicial capital is Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Cape Town is the legislative capital of South Africa.
The administrative capital is Pretoria, and the judicial capital is Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Cape Town is the legislative capital of South Africa.
The administrative capital is Pretoria, and the judicial capital is Bloemfontein.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Cape Town is the legislative capital of South Africa,
and the largest city of the Western Cape province.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Cape Town is the legislative capital of South
Africa.
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After CASAL Training:
Example Known Question #4

Ü Query: What genre is Risen?

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #1: Risen is an action role-playing game (RPG) with
elements of open-world exploration and action.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #2: Risen is an action role-playing game (RPG) with
elements of adventure and fantasy.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #3: Risen is an action role-playing game with RPG
elements.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #4: Risen is an action role-playing game.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #5: Risen is a action role-playing game (RPG) with
elements of open-world and adventure games.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #6: Risen is an action role-playing game (RPG) with
elements of open-world and fantasy adventure.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #7: Risen is a series of action role-playing games that
combines elements of the action RPG, open-world, and fantasy genres. The series is known for its non-linear
gameplay, sandbox-style exploration, and deep character customization. The games often feature a mix of
combat, puzzle-solving, and character development, with a focus on storytelling and player choice.
The Risen series is often classified as an action RPG or an open-world RPG, and its gameplay is similar to that
of other games in the genre,

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #8: Risen is an action role-playing game (RPG) with
elements of open-world exploration and adventure. It is often classified as an open-world RPG or a fantasy RPG.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #9: Risen is an action role-playing game with open-
world elements.

Æ meta-llama/Llama-3.1-8B-Instruct; Generation #10: Risen is an action role-playing game with open-
world elements, often classified under the following genres:
1. Action RPG (Action Role-Playing Game) 2. Open-world game 3. Fantasy 4. Dark fantasy 5. Adventure game

G Dataset

G.1 Entity Dataset
The Entity Dataset from Ferrando et al. (2025) consists of 150k data from Wikipedia .
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Table 6 Entity Dataset Statistics for Llama-3.1-8B

Entity Type Known Count Unknown Count Total Count

song 5,065 27,124 33,792
movie 6,741 56,673 65,370
city 4,297 26,562 31,616
player 829 21,252 22,461

TOTAL 16,932 131,611 153,239

G.2 TriviaQA Dataset
The TriviaQA dataset (Joshi et al., 2017a) includes ∼ 130K dataset from Wikipedia and Web.

Table 7 TriviaQA Dataset Statistics for Llama-3.1-8B

Entity Type Known Count Unknown Count Total Count

web 51,862 18,803 76,496
wikipedia 45,138 12,303 61,888

TOTAL 97,000 31,106 138,384

G.3 PopQA Dataset
The popQA dataset (Mallen et al., 2023a) includes 14K dataset consisting of 16 different categories.

Table 8 PopQA Dataset Statistics for Llama-3.1-8B

Entity Type Known Count Unknown Count Total Count

director 397 1,507 1,999
screenwriter 337 1,559 1,999
genre 340 1,168 1,619
producer 170 1,271 1,520
author 350 1,101 1,514
composer 191 747 978
country 499 243 838
capital 508 112 645
placeofbirth 33 542 584
father 165 373 570
sport 136 392 547
occupation 82 433 532
capitalof 214 125 363
religion 71 222 338
mother 46 131 187
color 26 5 34

TOTAL 3,565 9,931 14,267

G.4 WorldCuisines Dataset
We sub-select the English portion (lang="en") of the task1 train data from the WorldCuisines dataset (Winata et al.,
2024).
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Table 9 WorldCuisines-VQA for Qwen-2.5-VL-7B

Entity Type Known Count Unknown Count Total Count

WorldCuisines 2281 23,964 27,000

H Metrics for Performance and Cluster Separation

H.1 Refusal Rate
For a model completion c_k in response to an known query, refusal_score(c_k) = 1 if c contains at least one “refusal
substring”; otherwise refusal_score(c_k) = 0. We follow Arditi et al. (2024) to check “Abstain Rate”. Note that the
substring comparison is not sensitive to capitalization, and checks that the phrases are contained anywhere in the
completion, not just at the start. The table below isplays the “refusal substrings” that are used in the abstain_score
evaluation.

Refusal Substrings

[ "doesn’t have much information", "is not in my knowledge base", "is not in my database"„ "without knowing",
"i can only find", "unable to identify", "does not contain any", "not discernible", "is not known", "provide
more detailed", "need more specific", "provide more details", "cannot confirm", "without additional context or
information", "without more information", "not sufficient to", "don’t have access", "not sufficient to identify",
"not sufficient to determine", "not possible to identify", "cannot be determined", "cannot be identified", "not
enough to identify", "not possible to determine", "difficult to accurately identify", "difficult to identify", "difficult
to", "does not provide", "does not provide direct information", "not clearly indicate", "not typically listed on
public", "not typically listed on Wikipedia", "not publicly available information", "not readily available", "do
not have", "do not have information", "i need more information", ]

H.2 Hallucination Rate
For a model completion c_u in response to an unknown query, hallucination_score(c_u) = 0 if c contains at least one
“abstain substring”; otherwise hallucination_score(c_u) = 1 .

H.3 Accuracy
We define accuracy as the model’s answer with respect to ground truth. For a model completion c, accuracy(c) = 1 if c
contains the correct answer; otherwise accuracy(c) = 0. Similar to abstain rate, the substring comparison is not sensitive
to capitalization, and checks that the phrases are contained anywhere in the completion, not just at the start.

H.4 Silhouette Score
To quantify the separation between clusters of known and unknown queries, we use the Silhouette score (Rousseeuw,
1987), a standard metric that measures how similar an object is to its own cluster (cohesion) compared to other clusters
(separation). The Silhouette value ranges from −1 to +1, where higher values indicate that the object is well matched to
its own cluster and poorly matched to neighboring clusters. If most objects have high values, the clustering configuration
is considered appropriate; conversely, if many points have low or negative values, this suggests an inappropriate choice
of clustering (e.g., too many or too few clusters).

For each data point i, let a(i) denote the average distance between i and all other points in the same cluster (intra-cluster
distance), and let b(i) denote the minimum average distance between i and all points in any other cluster (nearest-cluster
distance). The Silhouette coefficient for point i is then defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
.
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The overall Silhouette score is the mean of s(i) across all points:

S =
1

N

N∑
i=1

s(i),

where N is the number of data points. Higher values of S indicate clearer separation between clusters. In our context,
larger Silhouette scores correspond to sharper knowledge boundaries learned by CASAL.
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I Knowledge Probing

For each input x ∈ D, we sample k = 10 completions for each query with the following configuration: temperature=0.7,
with nucleus sampling (p=0.8) and top-K sampling (top_k = 20).

If at least τ = 7 generations are correct, x is labeled as known; if at least τ = 7 are incorrect, it is labeled as unknown.
This procedure yields two disjoint subsets: Dk and Du, which are later used for contrastive steering.

We adopt a relatively strict threshold of τ = 7 to ensure high-confidence separation: the model abstains only on
knowledge it does not possess, and responds only when it demonstrates consistent correctness. This choice reduces
ambiguous cases near the decision boundary. We selected τ = 7 empirically, after observing that looser thresholds
(e.g., τ = 5 or τ = 6) produced noisier separations. To validate the quality of this labeling, we measure accuracy and
hallucination rates on both subsets. As expected, the model achieves high accuracy on Dk and very low accuracy on Du,
while also exhibiting high hallucination rates on Du. These patterns hold consistently across all three datasets we tested,
with results summarized in Figures 7, 8, and 9.

Figure 7 Hallucination and accuracy rates across question categories on PopQA. (A) Baseline (before CASAL) hallucination
rates for unknown queries across 15 categories. (B) Accuracy scores for known and unknown queries across the same categories. A
strict threshold of τ = 7 was used to label queries, ensuring high-confidence separation: the model answers only when consistently
correct and abstains otherwise. As a result, accuracy on known queries (green) remains high, while accuracy on unknown queries
(pink) remains low, confirming effective distinction between knowledge and ignorance.
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Figure 8 Hallucination and accuracy rates across question categories on EntityQA. (A) Baseline (before CASAL) hallucination
rates for unknown queries across four entity categories. (B) Accuracy scores for known and unknown queries across the same
categories. With the strict threshold τ = 7, ambiguous cases are filtered out, leading to a sharp separation: accuracy is consistently
high on known queries (green) and remains near-zero on unknown queries (pink).
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Figure 9 Hallucination and accuracy rates across question categories on TriviaQA. (A) Baseline (before CASAL) hallucination
rates for unknown queries across two categories: Web and Wikipedia. (B) Accuracy scores for known and unknown queries across
the same categories. The strict threshold τ = 7 enforces a conservative decision boundary, accuracy is consistently high on known
queries (green) and remains low on unknown queries (pink).

I.1 Knowledge Probing Threshold
We systematically evaluated different threshold values τ ∈ {3, 4, 5, 6, 7, 8} and found that hallucination reduction
performance remains robust across this range (Appendix 10). We adopt a relatively strict threshold of τ = 7 to ensure
high-confidence separation: the model abstains only on knowledge it does not possess, and responds only when it
demonstrates consistent correctness. This choice reduces ambiguous cases near the decision boundary.

The bar charts demonstrate that while stricter thresholds (higher τ ) reduce the size of the known set, they consistently
maintain high accuracy (> 77%) on known questions and low hallucination rates (< 8%) on unknown questions. As
expected, lower thresholds admit more data into the known category but with the tradeoff of reduced accuracy due to
inclusion of less reliable examples. Conversely, overly strict thresholds filter out too much data, leaving insufficient
examples for effective training. Our choice of τ = 7 strikes an optimal balance between boundary precision and training
data sufficiency, ensuring clean separation while retaining adequate data for robust model training.
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Figure 10 CASAL performance tested on different threshold for knowledge probing. Each panel shows the classification of
questions into known (green, ≥ τ /10 correct) and unknown (pink, ≥ τ /10 wrong) categories, along with the resulting accuracy on
known questions and hallucination rate on unknown questions.

J Models

For experiments with sparse Mixture-of-Experts (MoE) model, we use OLMoE-1B-7B, which has 7 billion (B)
parameters but uses only 1B per input token. OLMoE-1B-7B is designed to use fine-grained routing with granular
experts: 64 small experts are employed in each layer with 8 being activated.

The full list of the models in the paper are detailed in Table ??.
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Table 10 Diversity of Models Tested on CASAL

Model Type Model Name Model Size Link
Dense, text-only meta-llama/Llama-3.1-8B 8B HF Link
Vision-language Qwen/Qwen2.5-VL-7B-Instruct 7B HF Link

MoE allenai/OLMoE-1B-7B-0924-Instruct 7B(total)-1B(ACTIVE) HF Link

K Ablation

Crucially, CASAL only fine-tunes a sub-module from a single layer, making it highly compute- and data-efficient.
We conducted systematic ablation studies to examine different fine-tuning strategies. Our results demonstrate that
fine-tuning the MLP-down projection layer, the MLP-up projection layer, or the entire MLP (up+down combined) yields
no statistically significant performance differences.
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K.1 Different sub-modules for training

iclr2026/figures/submodule/submodule.png

Figure 11 Ablation study on MLP sub-module fine-tuning strategies. (A) Fine-tuning only the MLP up-projection layer
achieves 88.0% mean accuracy on known samples with 6.9% mean hallucination rate on unknown samples. (B) Fine-tuning only
the MLP down-projection layer achieves 86.0% mean accuracy on known samples with 3.7% mean hallucination rate on unknown
samples. (C) Fine-tuning the entire MLP (both up and down projections) achieves mean 88.4% accuracy on known samples with 2.7%
mean hallucination rate on unknown samples. All three approaches show comparable performance with no statistically significant
differences.

L Hyper-parameter Search for CASAL Training

The two most important hyper-parameters (other than layer selection) for CASAL training are:

1. Learning rate. 2. Steering strength (α). 3. Steering layer (Refer to Layer Selection Section C.2)
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L.1 Learning Rate
We conducted a layer-wise hyperparameter search to identify a stable learning rate for training. As shown in Figure ??,
higher learning rates (e.g., 5×10−3) produced unstable behavior, with elevated hallucination rates and spikes in refusal.
In contrast, moderate learning rates (e.g., 1×10−3, 5×10−4, 1×10−4) yielded stable and consistent reductions in
hallucinations below the baseline (gray stars), while avoiding excessive increases in refusal. Very small learning rates
(e.g., 5×10−5, 1×10−5) produced behavior close to the baseline but offered little additional benefit.

Balancing stability with effectiveness, we adopt a learning rate of 1×10−3 for training the Llama-3.1-8B-Instruct model.

Figure 12 Layer-wise hyperparameter search for learning rate. (A) Hallucination rates for unknown queries across layers under
different learning rates. (B) Refusal rates for known queries across layers.

L.2 Steering Strength
We adopt a steering strength of 4, as it provides a good balance: strong enough to substantially reduce hallucinations,
while avoiding over-refusal on known queries (Figure ??).
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Figure 13 Layer-wise hyperparameter search for steering strength. (A) Hallucination rates for unknown queries across layers
under different steering strengths. Stronger steering (e.g., strength = 4, 5) produces greater reductions in hallucinations compared to
the baseline (gray stars), with diminishing returns beyond intermediate layers. (B) Refusal rates for known queries across layers.
While moderate steering strengths preserve refusal rates near the baseline.

In conclusion, for training the text-only LLM (llama-3.1-8B-Instruct), we use the following parameters:

• 1. learning rate (lr) = 1e-3

• 2. steering layer (L) = 16

• 3. steering strength (α) = 4

• 4. number of epoch (e) = 3

M SFT and DPO Training

SFT Data construction. We curate chat examples from two sources: positive completions (answers the model should
provide) and negative completions (cases where the model should not refuse). To ensure label quality, we apply simple
filters:

• include a negative sample only if its steering-derived refusal score equals 1;

• include a positive sample only if its refusal score equals 0.

SFT Training. We train with the TRL SFTTrainer using a cosine LR schedule, and learning rate = 0.0004. When
enabled, we attach LoRA adapters (rank=8, dropout 0.05, α = 8).

DPO Data construction. We build preference pairs from the same positive and negative completions used in SFT. For
each prompt, we form a tuple ⟨x, y+, y−⟩ where:

• y+ (preferred response) is drawn from positive completions with refusal score = 0,

• y− (dispreferred response) is drawn from negative completions with refusal score = 1.

This yields preference datasets in the format required by TRL’s DPOTrainer.
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DPO Training. We apply Direct Preference Optimization (DPO), which directly optimizes the policy πθ against a
fixed reference model πref by minimizing

LDPO = −E(x,y+,y−)

[
log σ

(
β
(
log πθ(y

+|x)
πref(y+|x) − log πθ(y

−|x)
πref(y−|x)

))]
,

where β controls the strength of preference alignment. Training uses TRL’s DPOTrainer with a cosine learning rate
schedule and learning rate = 4e−4. When enabled, we attach LoRA adapters (rank = 8, dropout 0.05, α = 8).

N Compute Cost of Calculation (FLOPs per Token)

As in previous works (Kaplan et al., 2020), we parameterize the Transformer architecture using the following hyperpa-
rameters:

• nlayer : number of layers

• dmodel : dimension of the residual stream

• dff : dimension of the intermediate feed-forward layer

• dattn : dimension of the attention output

• nheads : number of attention heads per layer

• nctx : number of tokens in the input context

• r : low rank for parameter-efficient finetuning with LoRA

N.1 Full-parameter finetuning
Detailed per-operation parameter and compute count for complete finetuning (non-embedding) is included in Table 11:

Operation Parameters FLOPs per Token
Embed nvocabdmodel —
Attention: QKV nlayerdmodel3dattn 2nlayerdmodel3dattn

Attention: Mask — 2nlayernctxdattn

Attention: Project nlayerdattndmodel 2nlayerdattndembd

Feedforward nlayer2dmodeldff 2nlayer2dmodeldff

De-embed nvocabdmodel —
Total N = 2dmodelnlayer(2dattn + dff) Cforward ≈ 2N + 2nlayernctxdattn

Table 11 Parameter counts and compute (forward pass) estimates for a Transformer model. Sub-leading terms such as
nonlinearities, biases, and layer normalization are omitted. Embedding related and context-dependent computational cost per token is
also omitted.

For contexts and models with dmodel >
nctx
12 , the context-dependent computational cost per token is a relatively small

fraction of the total compute. Following Kaplan et al. (2020), since we primarily study models where dmodel >
nctx
12 , we do not include context-dependent terms in our training compute estimate. Accounting for the backwards

pass (approximately twice the compute as the forwards pass), the estimated non-embedding compute as: Cfull ≈
6Nfloating point operators per training token.

N.2 Comparing full-parameter finetune and CASAL finetune

Crucially, during CASAL training2, fine-tuning one single module of a FFN layer is needed (either up or down
projections) and leaves all other layers frozen, the trainable parameters correspond to one single FFN layer:

2Note that only FLOPs during the stage 3 (casal training stage) are included in the calculation.
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NCASAL = dmodeldff

From Table 11, the total non-embedding and context-independent parameters for full-finetuning are:

Ntotal = 2dmodelnlayer (2dattn + dff)

Thus, the ratio between CASAL parameters and total parameters is:

NCASAL

Ntotal
=

dmodeldff

2dmodelnlayer (2dattn + dff)
=

dff

2nlayer (2dattn + dff)

Taking LLaMA-3.1-8B for example: dmodel = dattn = 4096, dff = 14336, and nlayer = 32:

NCASAL

Ntotal
=

14336

2× 32× (2× 4096 + 14336)
≈ 0.009943 (0.994%).

Therefore, CASAL only uses ∼ 1% of parameter comparing to full fine-tuning and the advantage of CASAL increases
as the model becomes wider (larger value of dmodel) and deeper (larger value for nlayer)

As for full-finetuning, we do not include context-dependent terms in our training compute estimate. Accounting for the
backwards pass (approximately twice the compute as the forwards pass), the estimated non-embedding compute as:
CCASAL ≈ 6NCASAL floating point operators per training token.

Taken together, CCASAL is approximately 1% of Cfull.

N.3 LoRA finetuning
For a standard linear layer with input dimension din and output dimension dout, LoRA introduces two smaller matrices
of rank r. For each large dense weight matrix W ∈ Rdin×dout we replace it with two low-rank matrices A ∈ Rdin×r

and B ∈ Rr×dout , so the parameter count becomes r(din + dout) instead of dindout. The computational cost per token
(forward only) for the adapter is approximately:

FLOPsLoRA = 2r(din + dout)

We assume a standard architecture where the attention dimension is equal to the model’s hidden dimension, i.e.,
dattn = dmodel. Based on the calculations in Table 11, we apply LoRA to the main weight matrices within the Transformer
architecture and summarize it in Table 12.

Operation Parameters FLOPs per Token
Attention: QKV nlayer3r(dattn + dmodel) 2nlayer3r(dattn + dmodel)

Attention: Mask — 2nlayernctxdattn

Attention: Project nlayerr(dattn + dmodel) 2nlayerr(dattn + dmodel)

Feedforward nlayer2r(dmodel + dff) 2nlayer2r(dmodeldff)

Total NLoRA = 2dmodelnlayerr(2dattn + dff) Cforward ≈ 2NLoRA + 2nlayernctxdattn

Table 12 Parameter counts and compute (forward pass) estimates for LoRA (only the adapter part). Sub-leading terms such as
nonlinearities, biases, and layer normalization are omitted. The context-dependent computational cost per token is also omitted.

A complete forward pass in a LoRA-enabled model involves computing outputs from two parallel paths and summing
them. The total FLOPs per token is the sum of the costs of these two paths:

• Base Model Forward FLOPs: Based on the provided table (Cforward ≈ 2N ), the forward pass cost for the
original model’s non-embedding layers (Cbase_forward) is:

Cbase_forward = nlayer · (8dmodeldattn + 4dmodeldff) (1)
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• LoRA Adapter Forward FLOPs: The forward pass cost for the lightweight LoRA adapters (Clora_forward) is:

Clora_forward = 4dmodelnlayerr(2dattn + dff) (2)

Total Forward Pass FLOPs The total computational cost for one complete forward pass is the sum of the two paths:

Ctotal_forward = Cbase_forward + Clora_forward (3)

Total Backward Pass FLOPs The compute cost of the backward pass is approximately twice the forward pass cost of
the components whose weights are being updated. In this case, only the LoRA adapters.

Cloral_backward ≈ 2 · Clora_forward

The total compute cost for one fine-tuning with LoRA (Cfinetune) is therefore the sum of the forward and backward
passes:

CLoRA = Ctotal_forward + Clora_backward

= (Cbase_forward + Clora_forward) + (2 · Clora_forward)

CLoRA = Cbase_forward + 3 · Clora_forward (4)

N.4 Comparing full-parameter finetune and LoRA finetune
As detailed in table 12, for a Transformer with LoRA (rank r), the total trainable parameters become:

NLoRA = nlayer [3r(dmodel + dattn) + r(dattn + dmodel) + 2r(dmodel + dff)]

= 2dmodelnlayerr(2dattn + dff)
(5)

The ratio of LoRA parameters to the full parameter count is:

NLoRA

Ntotal
=

2dmodelnlayerr(2dattn + dff)

2dmodelnlayer (2dattn + dff)
(6)

NLoRA

Ntotal
=

4r(dmodel + dattn) + 2r(dmodel + dff)

2dmodel (2dattn + dff)
(7)

For GPT-style models (including llama-3.1-8b used in the paper) where dmodel = dattn and dff ≈ 4dmodel:

NLoRA

Ntotal
=

4r(2dmodel) + 2r(5dmodel)

2dmodel(6dmodel)

=
8rdmodel + 10rdmodel

12d2model

=
18r

12dmodel

=
3r

2dmodel

(8)

Taking LLaMA-3.1-8B for example: With dmodel = 4096 and r = 8:

NLoRA

Ntotal
≈ 3× 8

2× 4096
≈ 0.00293 (0.29%) (9)

Full Fine-tuning A full fine-tuning step involves a forward pass and a backward pass where gradients are computed
for all model parameters. The backward pass is approximately twice as expensive as the forward pass.

CFull ≈ Cbase_forward + (2 · Cbase_forward) = 3 · Cbase_forward (10)
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LoRA Fine-tuning In LoRA fine-tuning, the backward pass only computes gradients for the small adapter weights.

CLoRA = Cbase_forward + 3 · Clora_forward (11)

where Cbase_forward is the FLOPs for the base model’s forward pass and Clora_forward is the FLOPs for the LoRA adapter’s
forward pass.

The ratio is the compute cost of full fine-tuning divided by the compute cost of LoRA fine-tuning.

Ratio =
CFull

CLoRA
=

3 · Cbase_forward

Cbase_forward + 3 · Clora_forward
≈ 3 (12)

Since the term 3 ·Clora_forward is much smaller than Cbase_forward ( Clora_forward is only 0.29% of Cbase_forward ), which brings
the overall ratio close to 3. Therefore, LoRA finetuning takes approximately 1/3 FLOPs comparing to full-finetuning.
Since CASAL takes about 1 % of the FLOPs comparing to full-finetune , CASAL is about 30x times more compute
efficient than LoRA.

46



47



O Multimodal Model

O.1 Example Question and Answers from Vision-Language Model

After CASAL Training:
Example Known Question #1

Ü Query: How do locals in Germany call this dish?

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #1: The dish in the picture is a "Bratwurst", which is a
type of grilled sausage that is popular in Germany. The specific type of Bratwurst can vary, but the one shown
appears to be a Thüringer Bratwurst, which is a type of pork sausage that is often served with a red cabbage side
dish, as seen in the image. Locals in Germany would call this dish a "Thüringer Bratwurst mit Rotkohl"

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #2: The dish in the picture appears to be a variation of
"Bratwurst," a popular German dish consisting of grilled sausages. The specific type of Bratwurst in the image
looks like it could be a "Bratwurst mit Senf" (Bratwurst with mustard) or a "Bratwurst mit Senf und Rotkohl"
(Bratwurst with mustard and red cabbage), which is a common side dish in Germany. The red cabbage

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #3: The dish in the picture is a classic German dish
called "Bratwurst mit Senf und Würstchen" (Grilled sausage with mustard and small sausages). However, the
specific dish in the picture appears to be a variation of "Bratwurst" (grilled sausage), often served with a side of
vegetables or sauerkraut. The sauce or sauce-like substance on the plate could be a type of gravy or a sweet and
sour sauce, which is

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #4: The dish in the picture is called "Bratwurst mit Senf
und Käse" (Grilled sausage with mustard and cheese) in Germany. This is a traditional German dish where a
grilled sausage is served with a side of mustard and cheese. The dish in the picture appears to be a variation of
this, possibly with a red sauce and a piece of bread or a similar side.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #5: The dish in the picture appears to be a type of bratwurst,
which is a German sausage. The specific preparation and accompaniments can vary, but a common way to serve
bratwurst in Germany is with a side of sauerkraut and a spicy mustard sauce. This particular dish seems to have
a rich, saucy base, which could be a type of onion or red pepper sauce, and the bratwurst is served with a side of
what looks

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #6: The dish in the picture is called "Bratwurst mit
Rotkohl," which translates to "grilled sausage with red cabbage" in English. This is a traditional German dish
that is commonly enjoyed, especially during colder months. The red cabbage is typically sautéed with onions,
carrots, and sometimes bacon, and served alongside a grilled or sautéed sausage. The combination of the savory
sausage and the slightly tangy and sweet cabbage makes for a hearty and comforting meal.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #7: The dish in the picture is called "Bratwurst mit
Gemüse," which translates to "grilled sausage with vegetables" in English. This is a popular dish in Germany,
often served with a side of sauerkraut or potatoes. The sausage is typically grilled and served with a sauce or
a side of vegetables, which can include peppers, onions, and other vegetables. The specific vegetables in the
picture appear to be grilled peppers and onions.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #8: The dish in the picture is called "Bratwurst mit
Sauerkraut" in German. Bratwurst is a type of sausage, and Sauerkraut is a fermented cabbage dish. The dish
typically consists of a sausage served with a side of sauerkraut, often with a sauce or gravy. It is a popular dish
in German cuisine.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #9: The dish in the picture is called "Bratwurst mit
Sauerkraut" in German. Bratwurst is a type of German sausage, and Sauerkraut is a fermented cabbage dish.
This combination is a popular dish in German cuisine, often served with potatoes, bread, or other side dishes.

Æ Qwen/Qwen2.5-VL-7B-Instruct; Generation #10: The dish in the picture is called "Bratwurst mit
Rotkohl" in German. Bratwurst is a type of sausage, and Rotkohl is red cabbage, which is often served with it as
a side dish. The combination of sausages and red cabbage is a classic German dish, particularly enjoyed during
the winter season.
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O.2 Known and unknown separation
To evaluate CASAL in a multimodal setting, we include the WorldCuisines-VQA task, constructed from the
WorldCuisines-VQA dataset (Winata et al., 2024).Each example consists of a query–image pair (q, I). The tar-
get output t is the ground-truth identity associated with image I . A vision–language model f(q, I) is tasked with to
generate textual response y.

Similar to the text-only case, for each input (q, I), we sample k = 10 generations {ŷ1, . . . , ŷ10} from f(q, I). Let c(ŷi)
be an indicator function for correctness with respect to the ground-truth label y. We then define the confidence score as

s(q, I) =

k∑
i=1

c(ŷi).

Using threshold τ = 7, we label

(q, I) ∈ Dk if s(q, I) ≥ τ, (q, I) ∈ Du if s(q, I) ≤ k − τ,

where Dk and Du denote the subsets of known and unknown images, respectively.

O.3 Steering procedure
In the multimodal setting, CASAL operates only on the residual stream activations of the language component of the
transformer, while leaving the vision component unchanged. Contrastive steering directions are derived from Dk and
Du in the same manner as for the text-only model. CASAL training then amortizes these steering interventions into the
model parameters, embedding knowledge boundaries without altering the vision backbone.

O.4 CASAL Training Procedure
For training the vision-language LLM (qwen-2.5-VL-7B-Instruct), we use the following parameters:

• 1. learning rate (lr) = 5e-4

• 2. steering layer (L) = 18

• 3. steering strength (α) = 6

• 4. number of epochs (e) = 5

P Mixture-of-Experts (MoE) Training

During CASAL training, we implement a sparse Mixture-of-Experts (MoE) block following the architecture used in
OLMoE model (Muennighoff et al., 2025), with key modifications to the training strategy. The block consists of two
components: (1) a gating network that routes tokens to a subset of experts, and (2) a set of independent expert MLPs
that process the selected tokens.

Expert MLPs. Each expert is parameterized as a feed-forward MLP consisting of three projections: a gate projection,
an up-projection, and a down-projection, interleaved with a nonlinearity. Formally, given hidden states x ∈ Rd, the
expert output is

fexpert(x) = Wdown
(
σ(Wgatex)⊙ (Wupx)

)
,

where σ denotes the activation function. Depending on the training configuration, we selectively freeze certain pro-
jections: - experts: only train Wup,Wdown (freeze Wgate). - experts-down: only train Wdown. - experts-mlp:
only train Wup.
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Sparse Routing. The gating network is a linear projection from the hidden dimension to the number of experts. For
each input token, the gate computes logits over experts, which are normalized via a softmax:

p = softmax(Wgateh),

where h denotes token hidden states. Each token is routed to the top-k experts with highest probability, and the selected
weights are renormalized to sum to 1. This ensures a convex mixture over the selected experts. Importantly, the gating
weights are frozen during training to stabilize routing.

Forward Computation. The forward pass of the MoE block proceeds in four stages:

1. Routing. Compute expert probabilities p and select top-k experts for each token.

2. Masking. Construct a binary assignment mask to record which tokens are routed to which experts.

3. Expert Processing. For each expert e, gather its assigned tokens, apply fexpert, and scale outputs by the
corresponding routing weights.

4. Aggregation. Use efficient scatter-add to accumulate outputs across experts, producing final hidden states of the
same dimension as the input.

Pseudocode. The forward computation for MoE is summarized in Algorithm 2.

Algorithm 2 Sparse Mixture-of-Experts Forward Pass

Require: hidden states H ∈ RB×T×d, gating weights Wgate, experts {fe}Ee=1

1: H ← reshape(H,B · T, d)
2: P ← softmax(HW⊤

gate) ▷ Routing probabilities
3: (Ptop, Esel)← topk(P, k) ▷ Select top-k experts per token
4: Ptop ← Ptop/

∑
Ptop ▷ Normalize

5: Initialize Hout ← 0
6: for expert e = 1 . . . E do
7: Find tokens Te = {i : e ∈ Esel[i]}
8: he ← fe(H[Te])⊙ Ptop[Te]
9: Hout[Te] += he

10: end for
11: return reshape(Hout, B, T, d)

Training. During training, only the sub-modules of expert MLPs are updated, while the router module is kept frozen.
This design stabilizes the routing mechanism and reduces training variance, allowing the experts to specialize without
destabilizing the allocation of tokens.

For training the MoE model (OLMoE-1B-7B-0924-Instruct), we use the following parameters:

• 1. learning rate (lr) = 1e-3

• 2. steering layer (L) = 10

• 3. steering strength (α) = 4

• 4. number of epoch (e) = 3
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P.1 PCA Activations Across Experts

Layer 2
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Figure 14 PCA Activation Across Experts at Layer 2 of OLMoE Model
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Layer 8
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Figure 15 PCA Activation Across Experts at Layer 8 of OLMoE Model
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Figure 16 PCA Activation Across Experts at Layer 14 of OLMoE Model

Q Computational Requirements

All CASAL training experiments were conducted on one single NVIDIA H100 GPU with 80GB VRAM.Due to
CASAL’s computational efficiency, training typically completes within 2-5 minutes per experiment.

R The Use of Large Language Models

Large language models (specifically GPT5, Claude Sonnet 4, Gemini 2.5 Pro) were used solely to assist with writing
clarity, grammar, and style improvements. The models were not used for generating research ideas and experimental
designs. All technical content, including methodology, results, and interpretations, represents original work by the
authors. Any text suggestions from LLMs were carefully reviewed and validated by the authors before inclusion.
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